Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1895370.v1

ABSTRACT

Since the first reports of hepatitis of unknown aetiology occurring in UK children, over 1000 cases have been reported worldwide, including 268 cases in the UK, with the majority younger than 6 years old. Using genomic, proteomic and immunohistochemical methods, we undertook extensive investigation of 28 cases and 136 control subjects. In five cases who underwent liver transplantation, we detected high levels of adeno-associated virus 2 (AAV2) in the explanted livers. AAV2 was also detected at high levels in blood from 10/11 non-transplanted cases. Low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), both of which enable AAV2 lytic replication, were also found in the five explanted livers and blood from 15/17 and 6/9 respectively, of the 23 non-transplant cases tested. In contrast, AAV2 was detected at low titre in 6/100 whole bloods from child controls from cohorts with presence or absence of hepatitis and/or adenovirus infection. Our data show an association of AAV2 at high titre in blood or liver tissue, with unexplained hepatitis in children infected in the recent HAdV-F41 outbreak. We were unable to find evidence by electron microscopy, immunohistochemistry or proteomics of HAdV or AAV2 viral particles or proteins in explanted livers, suggesting that hepatic pathology is not due to direct lytic infection by either virus. The potential that AAV2, although not previously associated with disease, may, together with HAdV-F41 and/or HHV-6, be causally implicated in the outbreak of unexplained hepatitis, requires further investigation.


Subject(s)
Hepatitis , Adenoviridae Infections
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-820696.v1

ABSTRACT

Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID.


Subject(s)
Fatigue Syndrome, Chronic
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.14.431122

ABSTRACT

Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent and fight COVID-19 infections. We sought to study the ability of different A. annua and A. afra extracts and the Covid-Organics drink produced in Madagascar to inhibit SARS-CoV-2 and feline coronavirus (FCoV) replication in vitro. Several extracts as well as Covid-Organics inhibit SARS-CoV-2 and FCoV replication at concentrations that did not affect cell viability. It remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral replication following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment in patients.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL